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It is shown that the application of a projection operator from a given group to a function is equiv- 
alent to the successive application of projection operators from factor groups of the starting group to 
that function. When used with the factor groups representing the site symmetry of a position and the 
simplest group of interchanges of positions, this concept provides a very simple method for obtaining 
symmetry adapted linear combinations of basis functions. 
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Introduction 

One of the most important  uses of group theory by chemists lies in the con- 
struction of symmetry adapted linear combinations of basis functions. For most 
of the axial point groups (those with no more than one principal axis) the procedure 
involves a very simple explicit or implicit application of projection operators 
[1-3]. The procedure becomes more difficult for cubic and higher symmetries. 

Frequently, symmetry adapted functions are constructed from subgroups of 
the point groups of the molecule under consideration (as, for example, in the use 
of the C6 group rather than D6h for constructing the z~ molecular orbitals of 
benzene). In the axial point groups, the feasibility of such a process, and the 
appropriate choice of the subgroups is usually intuitively obvious to an experienced 
worker (and completely baffling to a neophyte). Again in the non-axial groups 
the process is much more difficult. 

The purpose of this paper is to put the factorization process on a theoretically 
sound footing and to outline a simple systematic procedure for constructing 
symmetry adapted linear combinations (which, following Cotton [1], we will call 
SALC's) of the basis functions within any symmetry group. The method, which 
draws on the work of Altmann [-4, 5], can be applied equally well to point groups 
of high symmetry (cubic, isosahedral, etc.), the symmetry groups of non-rigid 
molecules [-6, 7], space groups, or any other problem where the group describing 

t h e  system can be factored into appropriate  subgroups. 
The procedure will involve expressing the projection operators for the group 

under consideration as products of projection operators of two subgroups, the 
subgroup corresponding to the site symmetry of a basis function or set of basis 
functions and the subgroup corresponding to the simplest interchange of equi- 
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valent sites. Melvin [8] and Altmann [4, 5], have previously considered factoriza- 
tion of the projection operator; however, their factorizations are more restrictive 
than that presented here. The work of Melvin requires the concept of a "kernel" 
subgroup within a given irreducible representation; i.e., a subgroup onto which 
the irreducible representation under consideration maps as the totally symmetric 
irreducible representation. The factorization used by Altmann uses the concept 
of the poles of a rotation to derive an invariant subgroup of the group under 
consideration; The present work does not require either of these concepts. 

Groups as Products of Subgroups 

Groups having more than one independent generator (i.e. more than one 
independent type of symmetry element) can be expressed as products of subgroups. 
(The product of two groups N, consisting of the set of elements {Ni} and C, 
consisting of the set of elements { C~}, is the set of all products of elements {N i C~}.) 
The point group for any three-dimensional object can be expressed as the product 
of, at most, three independent subgroups. For systems with high symmetry, the 
factoring is usually not unique. The independent subgroups may themselves have 
more than one independent generator. Ultimately, however, the factoring can be 
continued until each subgroup has only one generator. These one-generator 
subgroups are cyclic in form, and consequently abelian. 

In constructing a group as the product of two subgroups, two types of product 
are usually considered (see Altmann [4] for proofs); the direct product and the 
semidirect product. The direct product occurs when every element of one subgroup 
commutes with every element of the other. In semidirect products, the complete 
set of elements of one subgroup (the invariant subgroup) will commute with every 
element of the other subgroup. The notations are: 

Direct product G = N x C (1) 

Semidirect product G = N/x C (2) 

where in (2) N is the invariant subgroup. In the present work, we propose to 
construct a specific binary product structure for the point group and then to 
construct the SALC's in the full symmetry by building them up from the subgroups. 
The product, however, will not necessarily be constructed so that either group 
is invariant. It is, in fact, what is commonly called the "weak direct product". 
The direct product and semidirect product are special cases of this. 

The proposed approach is to express the point group as the product of the 
site-symmetry group 1-93 of a given atom Gs and the simplest group which inter- 
changes the considered atom with those equivalent to it, G~. 

G = ~x" ~s. (3) 

Note that a "dot" has been usedto indicate the product since, depending upon 
the specific case, either a direct, a semidirect, or a weak direct product may be 
involved, and, if semidirect, either G s or GI may be invariant. Note also that the 
order of the group G x is just equal to the number of equivalent atoms. The utility 
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of this factorization comes from the fact that in the simplest group of order n 
which interchanges n equivalent functions, i.e. functions which are ident ica l  
except for interchange of origins (the group G~ in this case), each function generates 
a regular representation of the group [10]. Furthermore, every irreducible 
representation of a group is contained m r times (where m r is the dimension of the 
irreducible representation) in the regular representation of the group [11]. Thus; 
if ez~ery equivalent atom contained only one basis function, the irreducible re- 
presentations of G I would immediately yield the SALC's. This is the case, for 
example, for the 7c molecular orbitals of benzene. 

Unfortunately, most cases of interest have more than one basis function 
centered on each atom. However, we shall show that all that is required to produce 
SALC's over the full group is to project independent functions within G s and 
then combine these using the regular representation of G I. The only "trick" is 
that all equivalent or degenerate basis functions must be generated by the operation 
of the elements of G I on any one of the equivalent set. 

Projection Operators as Products of Projection Operators of Subgroups 

Consider the form of the projection operator 10(r) for the irreducible representa- 
tion F in the group G 

/~(r) = ~ z.(r)/~ (4) 
R 

where Z~ ) is the character of element R in representation F and/~ is the correspond- 
ing group operation. Z~ ) is defined as the trace of the matrix representing the 
operation R in the representation F 

) ~ )  = T r  R ~r) - ~" R (r) (5) 
- -  / , - - i i  �9 

i 

Now if G is a product of G I (having the operations S) and G s (having the opera- 
tions T) then 

/~ = ~ ~r (6) 

and R <r), the matrix representing 1~ in F, is the matrix direct product (outer or 
Kronecker product) of the matrices representing S and T in some representations, 
say U and F" [12] 

R (r) = S (r') x T (r') . (7i 

From the properties of an outer product 

Tr R (r) = Tr S (r') Tr T(r") (8) 
Thus, 

Tr R(F) = ~, ~ ~ T l r" ) .  (9) 
k l 

Substituting Eqs. (6) and (9) into Eq. (4), and recognizing that the summation over 
R may be replaced by the double summation over S and T, we obtain 

Z Z Z F, (r') (1o) 
S T k l 
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Table 1. Site symmetry and interchange groups for some selected 

Point group Molecule Ligand G s 

systems 

G, 

C3, A X3 X Cs C3 
AX3 Y Y Car C1 

C4~ A X  4 X Cs C 4 
A X  4 Y Z  Y(Z) C4v C 1 

C.v AX.  X C~ C. 

Dzh A X  2 Y2Z2 X(Y, Z) C2v C 2 
D2d AX2 Y2 X(Y)  C~ D 2 
D3h A X  3 X C2v C 3 

A X a Y2 Y Ca v C2 
Dan A X  6 X C s S 6 
D4h A X  4 X C2v C 4 

AX4 Y2 Y C4v C2 
D6a X 6 X C2~ C 6 
T d A X  4 X C3~ D 2 
O h A S  6 X C4v 8 6 

which may be refactored to give 

ZLOkk S Z  Z T*W") T 
S k T l 

= Z Z~ r') ~ Z Z *(r'') f (11) 
s T 
~(r') b(r") 
X Gr a G s �9 

Any SALC in G can be constructed by first projecting out the independent func- 
tions within the site-symmetry group Gs and then operating on this by the ap- 
propriate projection operator in the group of the simplest interchanges, G x. 
However, we have already stated that, because of the generation of the regular 
representation, each irreducible representation of G~ occurs in a predetermined 
fashion. If degenerate functions in the starting basis set remain both degenerate 
and unique under the operations of G s, the group G1 will have to be expanded to 
interchange all equivalent functions, and the site symmetry correspondingly 
reduced to a lower symmetry group. Such a situation occurs, for example, for 
Px and py orbitals if a C4 site symmetry axis is present. The projection P(E)px gives 
back pure Px and similarly for Pr 

Once all degeneracies have been broken, the correlation theorem [-13] and 
correlation tables can be used to immediately write down the desired SALC's. 

Applications 

The systematic application of Eq. (11) for constructing SALC's will be outlined 
stepwise. As a specific example we will construct the molecular orbitals arising 
from the p-type atomic orbitals on the ligands in an AX 6 octahedral complex. 

Step 1: Factor the point group of the molecule into the product of G~ and G s. 
In the octahedral complex (Oh point group) the ligand positions have C4,, site 
symmetry (four planes of symmetry and a C 4 axis pass through each ligand). The 
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Fig. 1. Set of ligand p~, py and p= orbitals in an octahedral complex 

six ligands are interchanged by the operations of a group of order 6, the S 6 group. 
G s is simply the group of the symmetry elements which pass through the site. 
G~ may be found by factoring G into a product of abelian groups, by extracting Gs 
from this and by obtaining G~ from what is left. The usual product structure for 
oh is [53 

Oh=D2/xD'3 x C i . (12) 

Factoring into abelian groups yields 

Oh = C2 A C'2 A C;  A C'~ x Ci .  (13) 

The group C4, , is not immediately obvious from this; however, 

C4v • C i = D4h : C 2 A C~2 A C~ • C i . (14) 
Thus 

oh = c ; .  c~. c4~ (15) 
=s6. c4v. 

(Note that the invariance properties are lost when the C 2 groups are commuted 
with the C; group; consequently, the weak direct product must be used in Eq. (15).) 
Table 1 lists G I and G s for some selected structures. 

Step 2: Orient the basis functions on each site so that equivalent functions are 
interchanged by the elements o f  G~. If there are degeneracies in the basis functions 
which are not lifted by Gs, the orientations will not be unique. More will be said 
about this point later. A suitable choice for the p-type ligand atomic orbitals in 
the example is shown in Fig. 1. 
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Table 2. Correlation of the irreducible representations of Oh with those of the site-symmetry and 
interchange groups 

Oh 86 C4v Oad C2v 

A19 Ao A 1 Alg A 1 
Azg A o BI A2 o B1 
E o Eg AI+B1 Eo A2+B 2 
Tlg A o + E o A z + E A2o + Eg A 2 + B 1 + B 2 
T2 o Ao+E o B2+E AIo+E 0 AI +A2+B2 
AI~ , A. A 2 Alu A 2 
Azu A, B 2 A2u B 2 
E~ E,, A2+B 2 E~ A I + B  1 
Tlu Au+Eu A I + E  A2u+Eu A I + B I + B 2  
T2u Au+Eu B I + E  Alu+Eu A i + A 2 + B 1  

If degeneracies not lifted by G s are associated with basis functions which are 
not mixed by the appropriate representations in Gs, Gt must be expanded to 
interchange all equivalent functions. In the example, the px and py degeneracy 
is not removed by C4,, nor are p~ and py mixed by/~(E). Thus, there are twelve 
equivalent basis functions which must be combined by Gv G1 must be expanded 
to a group of order twelve. The group $6- C2, where the axis in C; bisects adjacent 
pairs of ligands, has the proper order. If this C2 axis lies between ligands 1 and 2, it 
converts Pxl into P~,2 and py~ into - p ~ .  The new G, is D3d. The new Gs, C2 v, is the 
group which reflects the site symmetry of the newly introduced C 2 axis. 

Step 3: Find the correlations of the irreducible representations of GI and G s 
with those of the complete 9roup. For the example, these are shown in Table 2. 

Step 4: Using the correlation theorem, find the irreducible representations of the 
SALC's which are expected to be derived from each type of basis function. The 
correlation theorem [131, which is, in fact, a simple application of the ideas of 
induced and subduced representations and the Frobenius reciprocity theorem, 
states that the irreducible representations in a group G spanned by a function, 
or set of functions, located at a site of lower symmetry Gs can be found by finding 
the irreducible representations spanned by the function in Gs and then correlating 
these with the irreducible representations of G. Each function having symmetry F' 
in Gs will contribute to every F in G which correlates with F'. From Table 2 it is 
seen that the A 1 representation of C4v correlates with the A 10, Eg and Tlu representa- 
tions: thus the Pz ligand functions will appear in molecular orbitals of these sym- 
metries. The E representation of C4,, correlates with the Tlg, T29, Tlu and T2u 
representations of Oh. The px and py ligand orbitals will give rise to molecular 
orbitals of these symmetries. 

Step 5: Find the independent basis functions within G s. For the Oh system we 
are using, the Pz orbitals can be used directly in the S 6 �9 C,v factorization. They 
transform as the A 1 representation within C4,,, and, being non-degenerate, are 
independent. The Px and py orbitals transform as the E representation and are not 
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Table 3. Character tables for S 6 and D3d with correlations to Oh 

a) $6 (real form) 

O h S 6 E 2C 3 i 2S 6 

Alo A o 1 1 1 1 
E o E o 2 - 1 2 - 1 

A .  t 1 - I  - 1  
E .  2 - 1 - 2  1 

TI .  A .  + E .  3 0 - 3 0 

b) D3, ~ 

O h Dae E 2C 3 3C 2 i 2S 6 30" d 

Tlg 
T~o 

Aao 1 1 1 1 1 t 
A2a 1 1 --1 1 l --1 
Eg 2 - 1  0 2 - 1  0 
A1, , 1 1 1 - 1  - 1  --1 
A2.  1 1 - 1  - i  - 1  1 
E .  2 -- 1 0 - 2  1 0 
A 2 g + E  o 3 0 --1 3 0 - 1  
Alg  + E o 3 0 t 3 0 1 
A z~ + E . 3 0 - 1  - 3  0 1 
A ~ + E .  3 0 1 - 3  0 - 1  

independent. In the D3d-  C2v factorization, the projection operators from C2v(Gs) 
must be used. We have, operating on say p~, and pyl 

~:~(A1) p~, = p.~ + py: = )~AI 

/~(A~) py~ = p~,~ __ p ~  = XA~ 
(16) 

Step 6: Construct SALC's by usin 9 the projection operators from G1 and the 
functions from G s obtained in step 5. The appropriate representations within G1 
are obtained from the correlation tables obtained in step 3. The character tables 
for S 6 and D3d are given in Table 3, along with the representations leading to the 
desired representations in Oh. The results of applying the projection operators are 
(unnormalized): 

For the Pz orbitals with G1 = S 6 

~b(ale ) = I~(Ao) P~I = Pzl + P~2 + Pz3 + Pz4 + P~ + Pz6 

4) (eo) = ~(Eg) PzI = 2Pz, - Pz2 - Pz~ + 2pz~ - p,,  - p~6 (17) 

q~(tlu ) = p(Au+Eu)  Pz t  = 3p~, - 3Pz4. 
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Fig. 2. Starting set of hydrogen centered basis vectors for the normal vibrations of methane 

For  the Px and py orbitals with Gt = D3d (the xi and yi represent the corresponding 
Px and p~, orbitals) 

r  = t ~ ( ~ + ~  z ~  

= 2(xl - Y2) + Yl - -  X2 - -  X3 .qt_ 23 + 2(X4 -- YS) + Y4 -- X5 -- X6 "~ Y6 

~(t2o)  =/~(41a +/~a) ~(AI 

= 4(Xl  + Y 2 )  + Yl + X2 "~ X3 + Y 3  +4(x4  +ys)+yr + x 6  +Y6 
(18) 

= 4(Yl + x2) + xl  +Y2 + x3 + Y 3 - 4 ( y 4 + x s ) - x 4 - y s - x 6 - Y 6  

~b(t2u ) = #(AI,,+E,,) ZA2 

= 2 (y  1 - -  X2) + X1 - -  Y2 + Xa - -  Y3 - -  2(y4  --  X5) - -  X4 + Y5 - -  X6 + Y6" 

These, of course, are not  unique. In the present case, the use of the $6 subgroup 
of D3d leads to a simpler, but  equivalent set of functions. 

r ) =/~(A. + E.) ZB1 = 3(xl - Y2) + 3(xr - Ys) 

q~'(t20) = fi(A.+E.) ZA1 = 3(Xl + Y2) + 3(X4 + YS) 
(19) 

(Y(tlu) =/5(A~+E~) Zn2 = 3(yl + x2) - 3(y4 + Xs) 

r =/~(A, + Eu) ZAz = 3(yl -- X2) -- 3(y4 -- X5). 

These are in the form presented by Gray  and Beach [14]. 
As a second example, consider the normal  coordinates of methane. We will 

consider only the mot ions  of  the hydrogens relative to the carbon. The total 
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Fig. 3. Site-symmetry adapted hydrogen displacement vectors for methane 
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representation for a set of cartesian displacement vectors situated on the five 
atoms is A 1 + E + T 1 + 3T  2 [9]. Of these, one T 2 represents a translation of the 
entire molecule. This is the representation of the displacement vectors on the 
carbon; consequently, ignoring the carbon eliminates this from consideration. 
Of the remaining representations, which can all be obtained from the vectors on 
the four hydrogens, the T 1 represents a rotation of the entire molecule. The 
vibrational representations are thus A1 + E + 2 T  2. 

The steps are as follows: 
1. The point group of the molecule is T d. This can be factored into D 2/x C3v.  

The D 2 is Gx and C3v is Gs. 
2. A suitable orientation for the displacement vectors is shown in Fig. 2. This 

orientation has been chosen so that the basis vectors match the site symmetry. 
3. The correlations of D2 and Car with Te are shown in Table 4. 
4. F rom Table 4 it is seen that the At representation of C3v correlates with 

the A t and T 2 representations of T d while the E representation of C3~ correlates 
with the E, T~ and T2 representations. The T~ representation is the representation 
of the rotations, therefore, we need not concern ourselves with it. 

Table 4. Correlation of D 2 and C3v with T a 

Ta D2 C3 

A1 A A 1 
A 2 A A 2 
E 2A  E 

T1 B1 -}- B 2 - -  B 3 A2 q- E 
T 2 B 1 + B  2 + B  3 A 1 + E  
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5. The independent  basis vectors within C3, are 

p(A1) X1 : Xl .or. Y1 ~- Z1 : rl 

~:~(E) X1 = 2 X  1 _ I71 - Z1 = el  (20) 

/~(E)(Y1 - Z1) = Y1 - Z1 = P l .  

These are s h o w n  in Fig. 3. 
6. The final vibrational  functions are (only one  c o m p o n e n t  of  each degenerate 

funct ion is given): 

(o(a0 = ~(a) rl = r 1 q- r 2 q- r 3 + r 4 ,  (21a) 

( o l  ( t 2 )  = ~ B ~  + B 2 +  ~3) r l  = 3 r  1 _ r 2  _ r 3  _ r 4  ' (21b) 

( o ( e ) = f i ( a ) e l  = e l + e z + e 3 + e  4,  (21c) 

(o2(t2) =/~(B~ +B2+~3)el = 3el - e2 - e3 - e4.  (21d) 

The functions represented by Eqs. (21a), (21b) and (21c) are complete ly  equiv- 
alent to the functions vl, v3b and v2, given by Herzberg [-15]. That  of  Eq. (21d) 
does  not  l o o k  like one  of  his forms. However ,  using the project ion operator  for 
only the B 3 representation of  D z yields 

(o~(t2) = ]~(B3)el = el -- e2 -- e3 + e4.  (22) 

This is one  of  the v4 vibrations listed by Herzberg.  
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